skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rebmann, Corinna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT AimTo quantify the intra‐community variability of leaf‐out (ICVLo) among dominant trees in temperate deciduous forests, assess its links with specific and phylogenetic diversity, identify its environmental drivers and deduce its ecological consequences with regard to radiation received and exposure to late frost. LocationEastern North America (ENA) and Europe (EUR). Time Period2009–2022. Major Taxa StudiedTemperate deciduous forest trees. MethodsWe developed an approach to quantify ICVLo through the analysis of RGB images taken from phenological cameras. We related ICVLo to species richness, phylogenetic diversity and environmental conditions. We quantified the intra‐community variability of the amount of radiation received and of exposure to late frost. ResultsLeaf‐out occurred over a longer time interval in ENA than in EUR. The sensitivity of leaf‐out to temperature was identical in both regions (−3.4 days per °C). The distributions of ICVLo were similar in EUR and ENA forests, despite the latter being more species‐rich and phylogenetically diverse. In both regions, cooler conditions and an earlier occurrence of leaf‐out resulted in higher ICVLo. ICVLo resulted in ca. 8% difference of radiation received from leaf‐out to September among individual trees. Forest communities in ENA had shorter safety margins as regards the exposure to late frosts, and were actually more frequently exposed to late frosts. Main ConclusionsWe conducted the first intercontinental analysis of the variability of leaf‐out at the scale of tree communities. North American and European forests showed similar ICVLo, in spite of their differences in terms of species richness and phylogenetic diversity, highlighting the relevance of environmental controls on ICVLo. We quantified two ecological implications of ICVLo (difference in terms of radiation received and exposure to late frost), which should be explored in the context of ongoing climate change, which affects trees differently according to their phenological niche. 
    more » « less
  2. Abstract The need to develop and provide integrated observation systems to better understand and manage global and regional environmental change is one of the major challenges facing Earth system science today. In 2008, the German Helmholtz Association took up this challenge and launched the German research infrastructure TERrestrial ENvironmental Observatories (TERENO). The aim of TERENO is the establishment and maintenance of a network of observatories as a basis for an interdisciplinary and long‐term research program to investigate the effects of global environmental change on terrestrial ecosystems and their socio‐economic consequences. State‐of‐the‐art methods from the field of environmental monitoring, geophysics, remote sensing, and modeling are used to record and analyze states and fluxes in different environmental disciplines from groundwater through the vadose zone, surface water, and biosphere, up to the lower atmosphere. Over the past 15 years we have collectively gained experience in operating a long‐term observing network, thereby overcoming unexpected operational and institutional challenges, exceeding expectations, and facilitating new research. Today, the TERENO network is a key pillar for environmental modeling and forecasting in Germany, an information hub for practitioners and policy stakeholders in agriculture, forestry, and water management at regional to national levels, a nucleus for international collaboration, academic training and scientific outreach, an important anchor for large‐scale experiments, and a trigger for methodological innovation and technological progress. This article describes TERENO's key services and functions, presents the main lessons learned from this 15‐year effort, and emphasizes the need to continue long‐term integrated environmental monitoring programmes in the future. 
    more » « less
  3. Abstract The eddy covariance is a powerful technique to estimate the surface-atmosphere exchange of different scalars at the ecosystem scale. The EC method is central to the ecosystem component of the Integrated Carbon Observation System, a monitoring network for greenhouse gases across the European Continent. The data processing sequence applied to the collected raw data is complex, and multiple robust options for the different steps are often available. For Integrated Carbon Observation System and similar networks, the standardisation of methods is essential to avoid methodological biases and improve comparability of the results. We introduce here the steps of the processing chain applied to the eddy covariance data of Integrated Carbon Observation System stations for the estimation of final CO 2 , water and energy fluxes, including the calculation of their uncertainties. The selected methods are discussed against valid alternative options in terms of suitability and respective drawbacks and advantages. The main challenge is to warrant standardised processing for all stations in spite of the large differences in e.g . ecosystem traits and site conditions. The main achievement of the Integrated Carbon Observation System eddy covariance data processing is making CO 2 and energy flux results as comparable and reliable as possible, given the current micrometeorological understanding and the generally accepted state-of-the-art processing methods. 
    more » « less
  4. Abstract The Integrated Carbon Observation System Research Infrastructure aims to provide long-term, continuous observations of sources and sinks of greenhouse gases such as carbon dioxide, methane, nitrous oxide, and water vapour. At ICOS ecosystem stations, the principal technique for measurements of ecosystem-atmosphere exchange of GHGs is the eddy-covariance technique. The establishment and setup of an eddy-covariance tower have to be carefully reasoned to ensure high quality flux measurements being representative of the investigated ecosystem and comparable to measurements at other stations. To fulfill the requirements needed for flux determination with the eddy-covariance technique, variations in GHG concentrations have to be measured at high frequency, simultaneously with the wind velocity, in order to fully capture turbulent fluctuations. This requires the use of high-frequency gas analysers and ultrasonic anemometers. In addition, to analyse flux data with respect to environmental conditions but also to enable corrections in the post-processing procedures, it is necessary to measure additional abiotic variables in close vicinity to the flux measurements. Here we describe the standards the ICOS ecosystem station network has adopted for GHG flux measurements with respect to the setup of instrumentation on towers to maximize measurement precision and accuracy while allowing for flexibility in order to observe specific ecosystem features. 
    more » « less
  5. Abstract Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO 2 , CH 4 , N 2 O, H 2 O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value. 
    more » « less